Exponential velocity tails in a driven inelastic Maxwell model
نویسندگان
چکیده
منابع مشابه
Exponential velocity tails in a driven inelastic Maxwell model.
The problem of the steady-state velocity distribution in a driven inelastic Maxwell model of shaken granular material is revisited. Numerical solution of the master equation and analytical arguments show that the model has bilateral exponential velocity tails [P(v) approximately e(-|v|/sqrt[D])], where D is the amplitude of the noise. Previous study of this model predicted Gaussian tails [P(v) ...
متن کاملDriven inelastic Maxwell models with high energy tails.
The solutions of the homogeneous nonlinear Boltzmann equation for inelastic Maxwell models, when driven by different types of thermostats, show, in general, overpopulated high energy tails of the form approximately exp(-ac), with power law tails and Gaussian tails as border line cases. The results are compared with those for inelastic hard spheres, and a comprehensive picture of the long time b...
متن کاملDriven inelastic Maxwell gases.
We consider the inelastic Maxwell model, which consists of a collection of particles that are characterized by only their velocities and evolving through binary collisions and external driving. At any instant, a particle is equally likely to collide with any of the remaining particles. The system evolves in continuous time with mutual collisions and driving taken to be point processes with rate...
متن کاملThe Inelastic Maxwell Model
Dynamics of inelastic gases are studied within the framework of random collision processes. The corresponding Boltzmann equation with uniform collision rates is solved analytically for gases, impurities, and mixtures. Generally, the energy dissipation leads to a significant departure from the elastic case. Specifically, the velocity distributions have overpopulated high energy tails and differe...
متن کاملHydrodynamics for inelastic Maxwell model
Hydrodynamic equations for an inelastic Maxwell model are derived from the inelastic Boltzmann equation based on a systematic Chapman-Enskog perturbative scheme. Transport coefficients appear in Navier-Stokes order have been determined as a function of the restitution coefficient e, which cannot be defined for small e as a result of the high energy tail of the velocity distribution function obe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2002
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.66.062301